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Abstract

In this paper, the behavior of a crack in a piezoelectric material subjected to a uniform tension loading is

investigated by means of the non-local theory. Through the Fourier transform, the problem can be solved

with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of the
displacements across the crack surfaces. To solve the dual integral equations, the displacement jumps are

expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the

crack length, the materials constants and the lattice parameter on the stress field and the electric displace-

ment field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress and electric

displacement singularities are present near crack tips. The non-local elastic solutions yield a finite hoop

stress at the crack tip, thus allowing us to using the maximum stress as a fracture criterion.
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1. Introduction

It is well known that a piezoelectric material produces an electric field when deformed, and
undergo deformation when subjected to an electric field. The coupling nature of piezoelectric
materials has found wide applications in electric-mechanical and electric devices, such as elec-
tric-mechanical actuators, sensors and structures. When subjected to mechanical and electrical
loads in service, piezoelectric materials may fail prematurely due to their brittleness or due to
the presence of defects or flaws produced during their manufacturing process. Therefore, it is
important to study the fracture behavior of piezoelectric materials.
In the theoretical studies of crack problems in piezoelectric materials, several different electric

boundary conditions at the crack surfaces have been proposed by numerous researchers [1–7]. The
crack and defect problems of the piezoelectric materials were investigated in [1]. The electric sat-
uration crack model in the piezoelectric materials was proposed in [2,3]. A complete exact solution
was obtained in [3] for a single electric saturation crack in an infinite piezoelectric solid. Cracks in
a piezoelectric material consist of vacuum, air or some other gas. Electric fields can go through the
crack, so the electric displacement component perpendicular to the crack surfaces should be con-
tinuous across the crack surfaces. Along this line, the crack problem in piezoelectric materials was
studied in [4]. Dunn [5] and Sosa and Khutoryansky [6] avoided the common assumption of elec-
tric impermeability and utilized more accurate electric boundary conditions at the rim of an ellip-
tical flaw to deal with anti-plane problems in piezoelectricity. They analyzed the effects of electric
boundary conditions at the crack surfaces on the fracture mechanics of piezoelectric materials.
Most recently, the behavior of a bi-piezoelectric ceramic layer with an interfacial crack has been
investigated by using the dislocation density function and the singular integral equation method
for two different crack surface boundary conditions in [7], respectively, i.e. permeable and imper-
meable. It is interesting to note that very different results were obtained by changing the boundary
conditions. However, these solutions contain stress singularity, which is not reasonable according
to the physical nature. The state of stress near the tip of a sharp line crack in an elastic plane sub-
jected to uniform tension, shear and anti-plane shear were discussed in [8–10] by use of the non-
local theory. These solutions gave finite stresses at the crack tips, thereby solving the fundamental
singularity problem that persisted over many years. This enables us to employ the maximum stress
hypothesis to deal with fracture problems in a natural way. The problems in [8–10] were reexam-
ined in [11,12] using an alternative approach. The state of the dynamic stress near the tip of a line
crack or two line cracks in an elastic plane were investigated in [13,14] by use of the non-local the-
ory. As expected, the solutions did not contain any stress singularity. The non-local theory was
firstly used to study the anti-plane shear fracture problems in piezoelectric materials in [15,16].
However, to our knowledge, the electro-elastic behavior of a piezoelectric material with a perme-
able crack subjected to a uniform tension loading has not been studied by the non-local theory.
In this paper, the behavior of a crack in a piezoelectric material subjected to a uniform tension

loading is investigated by means of the non-local theory. The traditional concept of linear elastic
fracture mechanics and the non-local theory are extended to include the piezoelectric effects. The
Fourier transform technique is applied and thus the mixed boundary value problem is reduced to
two pairs of dual integral equations, in which the unknown variables are the jumps of the dis-
placements across the crack surfaces. To solve the dual integral equations, the jumps of the dis-
placements across the crack surface was expanded in a series of Jacobi polynomials and the
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Schmidt method [17] was used. This process is quite different from that adopted in the previous
works [1–10]. Again, as expected, the solution in this paper does not contain the stress and electric
displacement singularities near crack tips. The stress field and the electric field for the non-local
theory are similar to that of the classical elasticity solution away from the crack tips. Near the
crack tip, a lattice parameter and the crack length tend to control the amplitude of the stress
and the electric displacement fields.
2. Basic equations of non-local piezoelectric materials

For the plane problem, the basic equations of linear, homogeneous, transversely isotropic, non-
local piezoelectric materials, with vanishing body force are [4,6,10]
osxx
ox

þ osxy
oy

¼ 0 ð1Þ

osxy
ox

þ osyy
oy

¼ 0 ð2Þ

oDx

ox
þ oDy

oy
¼ 0 ð3Þ

sxxðX Þ ¼
Z
V
c011ðjX 0 � X jÞ ouðX

0Þ
ox0

þ c013ðjX 0 � X jÞ ovðX
0Þ

oy0
þ e031ðjX 0 � X jÞ o/ðX

0Þ
oy0

� �
dV ðX 0Þ ð4Þ

syyðX Þ ¼
Z
V
c013ðjX 0 � X jÞ ouðX

0Þ
ox0

þ c033ðjX 0 � X jÞ ovðX
0Þ

oy 0
þ e033ðjX 0 � X jÞ o/ðX

0Þ
oy0

� �
dV ðX 0Þ ð5Þ

sxyðX Þ ¼
Z
V
c044ðjX 0 � X jÞ ouðX 0Þ

oy 0
þ ovðX 0Þ

ox0

� �
þ e015ðjX 0 � X jÞ o/ðX

0Þ
ox0

� �
dV ðX 0Þ ð6Þ

DxðX Þ ¼
Z
V
e015ðjX 0 � X jÞ ouðX 0Þ

oy0
þ ovðX 0Þ

ox0

� �
� e011ðjX 0 � X jÞ o/ðX

0Þ
ox0

� �
dV ðX 0Þ ð7Þ

DyðX Þ ¼
Z
V
e031ðjX 0 � X jÞ ouðX

0Þ
ox0

þ e033ðjX 0 � X jÞ ovðX
0Þ

oy 0
� e033ðjX 0 � X jÞ o/ðX

0Þ
oy0

� �
dV ðX 0Þ ð8Þ
where the only difference from classical electro-elastic theory is in the stress and the electric dis-
placement constitutive equations (4)–(8) in which the stress sik(X) (i, k = x, y) and the electric dis-
placementDk(X) (k = x, y) at a point X depends on u,k(X), v,k(X) and /,k(X) (k = x, y), at all points
of the body. u, v and / are the components of the displacement vector and electric potential. For a
transversely isotropic piezoelectric material, there exist nine material parameters, c011ðjX 0 � X jÞ,
c013ðjX 0 � X jÞ, c033ðjX 0 � X jÞ, c044ðjX 0 � X jÞ, e015ðjX 0 � X jÞ, e031ðjX 0 � X jÞ, e033ðjX 0 � X jÞ, e011ðjX 0 � X jÞ
and e033ðjX 0 � X jÞwhich are functions of the distance jX 0 � Xj. The integrals in Eqs. (4)–(8) are over
the volumeV of the body enclosed by a surface oV. As discussed in [18,19], it can be assumed in the
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form of c011ðjX 0 � X jÞ, c013ðjX 0 � X jÞ, c033ðjX 0 � X jÞ, c044ðjX 0 � X jÞ, e015ðjX 0 � X jÞ, e031ðjX 0 � X jÞ,
e033ðjX 0 � X jÞ, e011ðjX 0 � X jÞ and e033ðjX 0 � X jÞ for which the dispersion curves of plane elastic waves
coincide with those known in lattice dynamics. Among several possible curves the following has
been found to be very useful:
ðc011; c013; c033; c044; e015; e031; e033; e011; e033Þ ¼ ðc11; c13; c33; c44; e15; e31; e33; e11; e33ÞaðjX 0 � X jÞ ð9Þ

aðjX � X 0jÞ ¼ a0 exp �ðb=aÞ2½ðx� x0Þ2 þ ðy � y 0Þ2	
n o

ð10Þ
where b is a constant and can be determined by experiment, as stated in [8–10], and a is the char-
acteristic length. The characteristic length may be selected according to the range and sensitivity
of the physical phenomena. For instance, for a perfect crystal, a may be taken as the lattice
parameter. For a granular material, a may be considered to be the average granular distance
and for a fiber composite, the fiber distance, etc. In the present paper, a is taken as the lattice
parameter of the materials. c11, c13, c33 and c44 are the elastic stiffness constants measured in a
constant electric field, e11 and e33 are the dielectric constants measured at constant strain, e15,
e31 and e33 are the piezoelectric constants. a0 is determined by the normalization
Z

V
aðjX 0 � X jÞdV ðX 0Þ ¼ 1 ð11Þ
In the present work, the non-local material parameters were given by Eqs. (9) and (10). Substitut-
ing Eq. (10) into Eq. (11), it can be obtained, in two-dimensional space,
a0 ¼
1

p
ðb=aÞ2 ð12Þ
Substitution of Eqs. (9) and (10) into Eqs. (4)–(8) yields
sikðX Þ ¼
Z
V

aðjX 0 � X jÞrikðX 0ÞdV ðX 0Þ ði; k ¼ x; yÞ ð13Þ

DkðX Þ ¼
Z
V

aðjX 0 � X jÞDc
kðX 0ÞdV ðX 0Þ ði; k ¼ x; yÞ ð14Þ
where
rxxðx; yÞ ¼ c11
ou
ox

þ c13
ov
oy

þ e31
o/
oy

ð15Þ

ryyðx; yÞ ¼ c13
ou
ox

þ c33
ov
oy

þ e33
o/
oy

ð16Þ

rxyðx; yÞ ¼ c44
ou
oy

þ ov
ox

� �
þ e15

o/
ox

ð17Þ

Dc
xðx; yÞ ¼ e15

ou
oy

þ ov
ox

� �
� e11

o/
ox

ð18Þ
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Dc
yðx; yÞ ¼ e31

ou
ox

þ e33
ov
oy

� e33
o/
oy

ð19Þ
The expressions (15)–(19) are the classical constitutive equations.
3. The crack model

It is assumed that there is a Griffith crack of length 2l along the x-axis in a piezoelectric material
plane as shown in Fig. 1. As discussed in [20], the permeable electric boundary condition will be
enforced in the present study, i.e., both the electric potential and the normal electric displacement
are assumed to be continuous across the crack surfaces. So the boundary conditions of the present
problem are (In this paper, we just consider the perturbation stress field and the perturbation
electric displacement field.)
sxyðx; 0þÞ ¼ sxyðx; 0�Þ ¼ 0; syyðx; 0þÞ ¼ syyðx; 0�Þ ¼ �s0; jxj 6 l ð20Þ

uðx; 0þÞ ¼ uðx; 0�Þ; vðx; 0þÞ ¼ vðx; 0�Þ;
syyðx; 0þÞ ¼ syyðx; 0�Þ; sxyðx; 0þÞ ¼ sxyðx; 0�Þ;

(
jxj > l ð21Þ

/ðx; 0þÞ ¼ /ðx; 0�Þ; Dyðx; 0þÞ ¼ Dyðx; 0�Þ; jxj P 0 ð22Þ

where s0 is a magnitude of the uniform stress loading.
Substituting Eqs. (13)–(15) into Eqs. (1)–(3), respectively, and using the Green–Gauss theorem,

we have [10]
ð23Þ

ð24Þ
ll

y

x

1

2

Fig. 1. The coordinate system for a crack inside a piezoelectric material.
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ð25Þ
where the boldface bracket indicates a jump at the crack line, i.e.
As discussed in [8], it can be obtained that
Hence from Eqs. (23)–(25), it can be obtained that
orxxðx; yÞ
ox

þ orxyðx; yÞ
oy

¼ 0 ð26Þ

orxyðx; yÞ
ox

þ oryyðx; yÞ
oy

¼ 0 ð27Þ

oDc
xðx; yÞ
ox

þ
oDc

yðx; yÞ
oy

¼ 0 ð28Þ
almost everywhere. Substituting Eqs. (15)–(19) into Eqs. (26)–(28), the governing equations are
obtained as
c11
o2u
ox2

þ c44
o2u
oy2

þ ðc13 þ c44Þ
o2v
oxoy

þ ðe31 þ e15Þ
o2/
oxoy

¼ 0 ð29Þ

c44
o
2v

ox2
þ c33

o
2v

oy2
þ ðc13 þ c44Þ

o
2u

oxoy
þ e15

o
2/
ox2

þ e33
o
2/
oy2

¼ 0 ð30Þ

ðe31 þ e15Þ
o2u
oxoy

þ e15
o2v
ox2

þ e33
o2v
oy2

� e11
o2/
ox2

� e33
o2/
oy2

¼ 0 ð31Þ
4. Solution procedures

Eqs. (29)–(31) can be expressed as
½MD	
u

v

/

8><
>:

9>=
>; ¼ 0 ð32Þ
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where the operator is
½MD	 ¼

c11
o2

ox2
þ c44

o2

oy2
ðc13 þ c44Þ

o2

oxoy
ðe31 þ e15Þ

o2

oxoy

ðc13 þ c44Þ
o2

oxoy
c44

o2

ox2
þ c33

o2

oy2
e15

o2

ox2
þ e33

o2

oy2

ðe31 þ e15Þ
o2

oxoy
e15

o2

ox2
þ e33

o2

oy2
� e11

o2

ox2
þ e33

o2

oy2

� �

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
The determinant of [MD] is
det½MD	 ¼ b
o6

oy6
þ c

o6

oy4ox2
þ d

o6

oy2ox4
þ e

o6

ox6
in which
b ¼ �c44ðe233 þ c33e33Þ ð33Þ

c ¼ 2e33c13ðe31 þ e15Þ þ e33ðc13 þ c44Þ2 � c11ðe233 þ c33e33Þ
h
�c44ðc33e11 þ c44e33 � 2e33e31Þ � c33ðe31 þ e15Þ2

i
ð34Þ

d ¼ 2e15ðe31 þ e15Þðc13 þ c44Þ þ e11ðc13 þ c44Þ2 � c11ðc44e33 þ c33e11 þ 2e33e15Þ
� c44½e215 þ c44e11 þ ðe31 þ e15Þ2	 ð35Þ

e ¼ �c11ðe215 þ c44e11Þ ð36Þ

Based on the cofactors Dik of det[MD] (i, k = 1, 2, 3), and the method developed in [20,21], the
general solutions of Eq. (32) are
ðu; v;/ÞT ¼ ðDi1;Di2;Di3ÞTF ði ¼ 1; 2; 3Þ ð37Þ

with F satisfying the equation
det½MD	F ¼ 0 ð38Þ

In the following analysis, we use only (D21, D22, D23) for problems symmetric about the y-axis
D21 ¼ a1
o4

ox3oy
þ a2

o4

oxoy3

D22 ¼ �c11e11
o
4

ox4
� a3

o
4

ox2oy2
� c44e33

o
4

oy4

D23 ¼ �c11e15
o4

ox4
� a4

o4

ox2oy2
� c44e33

o4

oy4
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where
a1 ¼ ðc13 þ c44Þe11 þ ðe15 þ e31Þe15

a2 ¼ ðc13 þ c44Þe33 þ ðe15 þ e31Þe33

a3 ¼ c11e33 þ ðe15 þ e31Þ2 þ c44e11

a4 ¼ c11e33 � c13ðe15 þ e31Þ � c44e31
Using the symmetry on y-axis and the Fourier transform on x, F can be expressed as
F ðx; yÞ ¼ 2

p

Z 1

0

f ðs; yÞ cosðsxÞds ð39Þ
Substitution of Eq. (39) into Eq. (38) yields
b
o6f
oy6

� cs2
o4f
oy4

þ ds4
o2f
oy2

� es6 ¼ 0 ð40Þ
which is a homogeneous equation. The solution of f is a function of exp(ksy) in which k is the root
of the algebraic equation
bk6 � ck4 þ dk2 � e ¼ 0 ð41Þ

Let �k

2 ¼ k2 � c=3b. Then Eq. (41) becomes
�k
6 þ p�k

2 þ q ¼ 0 ð42Þ

with
p ¼ � c2

3b2
þ d
b

and q ¼ cd

3b2
� e
b
� 2c3

27b3
whose roots ð�k2Þ are
�k
2

1 ¼ � q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r( )1
3

� q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r( )1
3

ð43Þ

�k
2

2 ¼ x � q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r( )1
3

� x2 q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r( )1
3

ð44Þ

�k
2

3 ¼ x2 � q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r( )1
3

� x
q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r( )1
3

ð45Þ
where x ¼ ð�1þ i
ffiffiffi
3

p
Þ=2. The properties of the roots �k

2
depends on the parameter, D = q2/4 +

p3/27.

(1) D > 0, one real root and a pair of conjugate complex roots.

(2) D = 0, three real roots, (a) p = q = 0, �k
2

1 ¼ �k
2

2 ¼ �k
2

3 ¼ 0, (b) q2/4 = �p3/275 0, �k
2

1 6¼ �k
2

2 ¼ �k
2

3.

(3) D < 0, three real roots, �k
2

1 6¼ �k
2

2 6¼ �k
2

3.
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Based on Eqs. (33)–(36) and (41), we obtain
k21k
2
2k

2
3 ¼

c11ðe215 þ c44e11Þ
c44ðe233 þ c33e33Þ

> 0 ð46Þ
which indicates that at least one of the roots k2i (i = 1, 2, 3) is positive.
Depending on the properties of k2, the function f has four different general solutions (for y P 0,

j = 1, 2):

(a) If k21 6¼ k22 6¼ k23 > 0 then
f ðs; yÞ ¼ A1ðsÞe�k1sy þ A2ðsÞe�k2sy þ A3ðsÞe�k3sy ð47Þ

(b) If k21 6¼ k22 ¼ k23 > 0, then
f ðs; yÞ ¼ A1ðsÞe�k1sy þ A2ðsÞe�k2sy þ A3ðsÞsye�k2sy ð48Þ

(c) If k21 ¼ k22 ¼ k23 > 0, then
f ðs; yÞ ¼ A1ðsÞe�k1sy þ A2ðsÞsye�k2sy þ A3ðsÞs2y2e�k2sy ð49Þ

(d) If k21 > 0 and k22; k

2
3 < 0 or k22 and k23 being a pair of conjugate complex roots, then, in this

case, the k2 and k3 are a pair of conjugate complexes �d ± ix. The solution of the function
f is
f ðs; yÞ ¼ A1ðsÞe�k1sy þ A2ðsÞe�dsy cosðsxyÞ þ A3ðsÞe�dsy sinðsxyÞ ð50Þ

where d and x > 0 and Ai(s) (i = 1, 2, 3) is a function of s to be determined by the boundary
conditions.

Based on the solution of the auxiliary function f, the displacement, the stresses, the electric
displacement and the electric potential fields are calculated by using Mathematica and using
Eqs. (47)–(50) and Eq. (37) for the problems symmetric about the y-axis.

For k21 6¼ k22 6¼ k23 > 0, the displacement, the stresses, the electric displacement and the electric
potential fields are given as follows (The other cases can be obtained using a similar method. Here,
they are omitted in the present paper.):
uð1Þðx; yÞ ¼ 2

p

X3
i¼1

ki �a1 þ a2k
2
i

� � Z 1

0

AiðsÞs4 sinðsxÞe�kisy ds ð51Þ

vð1Þðx; yÞ ¼ � 2

p

X3
i¼1

c11e11 � a3k
2
i þ c44e33k

4
i

� � Z 1

0

AiðsÞs4 cosðsxÞe�kisy ds ð52Þ

/ð1Þðx; yÞ ¼ � 2

p

X3
i¼1

c11e15 � a4k
2
i þ c44e33k

4
i

� � Z 1

0

AiðsÞs4 cosðsxÞe�kisy ds ð53Þ

uð2Þðx; yÞ ¼ 2

p

X3
i¼1

ki a1 � a2k
2
i

� � Z 1

0

BiðsÞs4 sinðsxÞekisy ds ð54Þ
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vð2Þðx; yÞ ¼ � 2

p

X3
i¼1

c11e11 � a3k
2
i þ c44e33k

4
i

� � Z 1

0

BiðsÞs4 cosðsxÞekisy ds ð55Þ

/ð2Þðx; yÞ ¼ � 2

p

X3
i¼1

c11e15 � a4k
2
i þ c44e33k

4
i

� � Z 1

0

BiðsÞs4 cosðsxÞekisy ds ð56Þ

rð1Þ
yy ðx; yÞ ¼

2

p

X3
i¼1

ki c13 �a1 þ a2k
2
i

� �
þ c33 c11e11 � a3k

2
i þ c44e33k

4
i

� ��

þe33 c11e15 � a4k
2
i þ c44e33k

4
i

� �� Z 1

0

AiðsÞs5e�kisy cosðsxÞds ð57Þ

rð1Þ
xy ðx; yÞ ¼

2

p

X3
i¼1

c44k
2
i a1 � a2k

2
i

� �
þ c44 c11e11 � a3k

2
i þ c444e33k

4
i

� ��

þe15 c11e15 � a4k
2
i þ c44e33k

4
i

� �� Z 1

0

AiðsÞs5e�kisy sinðsxÞds ð58Þ

Dð1Þc
y ðx; yÞ ¼ 2

p

X3
i¼1

ki e31 �a1 þ a2k
2
i

� �
þ e33 c11e11 � a3k

2
i þ c44e33k

4
i

� ��

�e33 c11e15 � a4k
2
i þ c44e33k

4
i

� �� Z 1

0

AiðsÞs5e�kisy cosðsxÞds ð59Þ

rð2Þ
yy ðx; yÞ ¼

2

p

X3
i¼1

ki c13 a1 � a2k
2
i

� �
� c33 c11e11 � a3k

2
i þ c44e33k

4
i

� ��

�e33 c11e15 � a4k
2
i þ c44e33k

4
i

� �� Z 1

0

BiðsÞs5ekisy cosðsxÞds ð60Þ

rð2Þ
xy ðx; yÞ ¼

2

p

X3
i¼1

c44k
2
i a1 � a2k

2
i

� �
þ c44 c11e11 � a3k

2
i þ c44e33k

4
i

� ��

þe15 c11e15 � a4k
2
i þ c44e33k

4
i

� �� Z 1

0

BiðsÞs5ekisy sinðsxÞds ð61Þ

Dð2Þc
y ðx; yÞ ¼ 2

p

X3
i¼1

ki e31 a1 � a2k
2
i

� �
� e33 c11e11 � a3k

2
i þ c44e33k

4
i

� ��

þe33 c11e15 � a4k
2
i þ c44e33k

4
i

� �� Z 1

0

BiðsÞs5ekisy cosðsxÞds ð62Þ
where ðrðjÞ
x ;rðjÞ

y ;rðjÞ
xy Þ and ðDðjÞc

x ;DðjÞc
y Þ are the components of the stress tensor and the electric dis-

placement vector, (u(j), v(j)) and /(j) are the components of the displacement vector and the electric
potential, and the superscript j = 1, 2 correspond to the half-planes y P 0 and y 6 0 through in
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this paper. From Eqs. (20)–(22) and (13) and (14), we see that rð1Þ
yy ðx; 0Þ ¼ rð2Þ

yy ðx; 0Þ,
rð1Þ
xy ðx; 0Þ ¼ rð2Þ

xy ðx; 0Þ and Dð1Þc
y ðx; 0Þ ¼ Dð2Þc

y ðx; 0Þ for all values of x and it is easily shown that this
condition is equivalent to equations
X3
i¼1

ki

�
c13 �a1 þ a2k

2
i

� �
þ c33 c11e11 � a3k

2
i þ c44e33k

4
i

� �
þ e33 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
AiðsÞ

¼
X3
i¼1

ki

�
c13 a1 � a2k

2
i

� �
� c33 c11e11 � a3k

2
i þ c44e33k

4
i

� �
� e33 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
BiðsÞ

ð63Þ

X3
i¼1

�
c44k

2
i a1 � a2k

2
i

� �
þ c44 c11e11 � a3k

2
i þ c444e33k

4
i

� �
þ e15 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
AiðsÞ

¼
X3
i¼1

�
c44k

2
i a1 � a2k

2
i

� �
þ c44 c11e11 � a3k

2
i þ c44e33k

4
i

� �
þ e15 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
BiðsÞ

ð64Þ

X3
i¼1

ki

�
e31 �a1 þ a2k

2
i

� �
þ e33 c11e11 � a3k

2
i þ c44e33k

4
i

� �
� e33 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
AiðsÞ

¼
X3
i¼1

ki

�
e31 a1 � a2k

2
i

� �
� e33 c11e11 � a3k

2
i þ c44e33k

4
i

� �
þ e33 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
BiðsÞ

ð65Þ
To solve the problem, the displacement and the electric potential jumps are defined as follows:
f1ðxÞ ¼ uð1Þðx; 0Þ � uð2Þðx; 0Þ ð66Þ

f2ðxÞ ¼ vð1Þðx; 0Þ � vð2Þðx; 0Þ ð67Þ

f3ðxÞ ¼ /ð1Þðx; 0Þ � /ð2Þðx; 0Þ ð68Þ
It can be obtained that f1(x) is an odd function and f2(x) is an even function.
Substituting Eqs. (51)–(56) into Eqs. (66)–(68), and applying the Fourier transform and the

boundary conditions (22), it can be obtained
�f 1ðsÞ=s4 ¼
X3
i¼1

ki �a1 þ a2k
2
i

� �
AiðsÞ �

X3
i¼1

ki a1 � a2k
2
i

� �
BiðsÞ ð69Þ

�f 2ðsÞ=s4 ¼ �
X3
i¼1

c11e11 � a3k
2
i þ c44e33k

4
i

� �
AiðsÞ þ

X3
i¼1

c11e11 � a3k
2
i þ c44e33k

4
i

� �
BiðsÞ ð70Þ
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�f 3ðsÞ=s4 ¼ �
X3
i¼1

c11e15 � a4k
2
i þ c44e33k

4
i

� �
AiðsÞ þ

X3
i¼1

c11e15 � a4k
2
i þ c44e33k

4
i

� �
BiðsÞ ¼ 0

ð71Þ
Here a superposed bar indicates the Fourier transform. If f(x) is an even function, the Fourier
transform is defined as follows:
�f ðsÞ ¼
Z 1

0

f ðxÞ cosðsxÞdx; f ðxÞ ¼
Z 1

0

�f ðsÞ cosðsxÞds ð72Þ
If f(x) is an odd function, the Fourier transform is defined as follows:
�f ðsÞ ¼
Z 1

0

f ðxÞ sinðsxÞdx; f ðxÞ ¼
Z 1

0

�f ðsÞ sinðsxÞds ð73Þ
From Eqs. (13) and (14), we have
syyðx; yÞ ¼
Z 1

0

Z 1

�1
aðjX 0 � X jÞrð1Þ

yy ðx0; y0Þdx0
� �

dy 0 þ
Z 0

�1

Z 1

�1
aðjX 0 � X jÞrð2Þ

yy ðx0; y 0Þdx0
� �

dy0

ð74Þ

sxyðx; yÞ ¼
Z 1

0

Z 1

�1
aðjX 0 � X jÞrð1Þ

xy ðx0; y0Þdx0
� �

dy 0 þ
Z 0

�1

Z 1

�1
aðjX 0 � X jÞrð2Þ

xy ðx0; y 0Þdx0
� �

dy0

ð75Þ

Dyðx; yÞ ¼
Z 1

0

Z 1

�1
aðjX 0 � X jÞDð1Þc

y ðx0; y 0Þdx0
� �

dy0 þ
Z 0

�1

Z 1

�1
aðjX 0 � X jÞDð2Þc

y ðx0; y0Þdx0
� �

dy0

ð76Þ
By solving six Eqs. (63)–(65) and (69)–(71) with six unknown functions, substituting the solutions
into Eqs. (57), (58), (74)–(76), using the relations as follows [22]:
I1 ¼
Z 1

�1
expð�px02Þ

sin nðx0 þ xÞ

cos nðx0 þ xÞ

( )
dx0 ¼ ðp=pÞ1=2 expð�n2=4pÞ

sinðnxÞ

cosðnxÞ

( )

I2 ¼
Z 1

0

expð�py02 � cy0Þdy 0 ¼ 1

2
ðp=pÞ1=2 expðc2=4pÞ½1� Uðc=2 ffiffiffi

p
p Þ	

UðzÞ ¼ 2ffiffiffip
Z z

expð�t2Þdt

p 0
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and applying the boundary conditions (20) to the results, we have
syyðx; 0Þ ¼
2

p

Z 1

0

s �f 1ðsÞ
X3
i¼1

giðsÞb1i þ �f 2ðsÞ
X3
i¼1

giðsÞb2i

" #
cosðsxÞds ¼ �s0; 0 6 x 6 l ð77Þ

sxyðx; 0Þ ¼
2

p

Z 1

0

s �f 1ðsÞ
X3
i¼1

giðsÞb3i þ �f 2ðsÞ
X3
i¼1

giðsÞb4i

" #
sinðsxÞds ¼ 0; 0 6 x 6 l ð78Þ

Z 1

0

�f 1ðsÞ sinðsxÞds ¼ 0; x > l ð79Þ

Z 1

0

�f 2ðsÞ cosðsxÞds ¼ 0; x > l ð80Þ
where giðsÞ ¼ exp½a
2s2ðk2i �1Þ

4b2
	½1� Uðaski

2b Þ	 (i = 1, 2, 3). bji (j = 1, 2, 3, 4, 5, 6; i = 1, 2, 3) are non-zero

constants. It can be seen in Appendix A. (Here, we just give these constants for
k21 6¼ k22 6¼ k23 > 0. The other cases can be obtained using the same method.) To determine the un-
known functions �f 1ðsÞ and �f 2ðsÞ, the above two pairs of dual integral equations (77)–(80) must be
solved. For the lattice parameter a! 0, then gi(s) equal to a non-zero constant and Eqs. (77)–(80)
reduce to two pairs of dual integral equations for same problem in classical elasticity.
5. Solution of the dual integral equations

The only difference between the classical and the non-local equations is in the influence function
gi(s), it is logical to utilize the classical solution to convert the system Eqs. (77)–(80) to an integral
equation of the second kind that is generally better behaved. However, the dual integral equations
(77)–(80) can not be transformed into a Fredholm integral equation of the second kind, because
gi(s) does not tend to a constant C (C5 0) for s!1. This can be explained as in Eringen�s pa-
pers [8,9]. Of course, the dual equations (77)–(80) can be considered to be a single integral equa-
tion of the first kind with discontinuous kernel. It is well-known in the literature that integral
equations of the first kind are generally ill-posed in sense of Hadamard, i.e. small perturbations
of the data can yield arbitrarily large changes in the solution. This makes the numerical solution
of such equations quite difficult. To overcome the difficult, the Schmidts method [17] is used to
solve the dual integral equations (77)–(80). The displacement jumps are expanded by the following
series:
f1ðxÞ ¼
X1
n¼0

anP
ð1=2;1=2Þ
2nþ1

x
l

� �
1� x2

l2

� �1
2

for 0 6 x 6 l ð81Þ

f1ðxÞ ¼ 0 for l < x ð82Þ

f2ðxÞ ¼
X1
n¼0

bnP
ð1=2;1=2Þ
2n

x
l

� �
1� x2

l2

� �1
2

for 0 6 x 6 l ð83Þ
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f2ðxÞ ¼ 0 for l < x ð84Þ

where an and bn are unknown coefficients, P

ð1=2;1=2Þ
n ðxÞ is a Jacobi polynomial [22] (It is well known

that the Jacobi polynomial P ð1=2;1=2Þ
n ðxÞ is a closed orthonormal function sequence. The weight

function is ð1� x2Þ
1
2.). The Fourier Transform of Eqs. (81)–(84) is [23]
�f 1ðsÞ ¼
X1
n¼0

anQn
1

s
J 2nþ2ðslÞ; Qn ¼

ffiffiffi
p

p
ð�1Þn

Cð2nþ 2þ 1
2
Þ

ð2nþ 1Þ! ð85Þ

�f 2ðsÞ ¼
X1
n¼0

bnRn
1

s
J 2nþ1ðslÞ; Rn ¼

ffiffiffi
p

p
ð�1Þn

Cð2nþ 1þ 1
2
Þ

ð2nÞ! ð86Þ
where C(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting Eqs. (85) and (86) into Eqs. (77)–(80), it can be shown that Eqs. (79) and (80) are

automatically satisfied. Eqs. (77) and (78) reduce to
2

p

X1
n¼0

Z 1

0

anQnJ 2nþ2ðslÞ
X3
i¼1

giðsÞb1i þ bnRnJ 2nþ1ðslÞ
X3
i¼1

giðsÞb2i

" #
cosðsxÞds¼�s0; 06 x6 l

ð87Þ

2

p

X1
n¼0

Z 1

0

anQnJ 2nþ2ðslÞ
X3
i¼1

giðsÞb3i þ bnRnJ 2nþ1ðslÞ
X3
i¼1

giðsÞb4i

" #
sinðsxÞds ¼ 0; 0 6 x 6 l

ð88Þ
It can be obtained that
e
a2s2ðk2

i
�1Þ

4p 1� U
aski
2

ffiffiffi
p

p
� �� �

¼
2

ffiffiffi
p

p
e�

a2s2
4pffiffiffi

p
p

aski
1þ

X1
k¼1

ð�1Þk ð2k � 1Þ!!

2 aski
2
ffiffi
p

p
� �2� �k

2
6664

3
7775
Here the relation 1� UðzÞ ¼ e�z
2ffiffi

p
p

z 1þ
P1

k¼1ð�1Þ
k ð2k�1Þ!!

ð2z2Þk

h i
was used.

The semi-infinite integral in Eqs. (87) and (88) can be evaluated directly. Eqs. (87) and (88) can
now be solved for the coefficients an and bn by the Schmidt method [11–17]. For brevity, Eqs. (87)
and (88) can be rewritten as
X1
n¼0

anE�
nðxÞ þ

X1
n¼0

bnF �
nðxÞ ¼ U 0ðxÞ; 0 6 x 6 l ð89Þ

X1
n¼0

anG
�
nðxÞ þ

X1
n¼0

bnH �
nðxÞ ¼ 0; 0 6 x 6 l ð90Þ
where E�
nðxÞ, F �

nðxÞ, G�
nðxÞ, H �

nðxÞ and U0(x) are known functions.
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From Eq. (90), it can be obtained
X1
n¼0

bnH �
nðxÞ ¼ �

X1
n¼0

anG
�
nðxÞ ð91Þ
It can be solved for the coefficients bn by the Schmidt method. Here the form �
P1

n¼0anG
�
nðxÞ can

be considered as a known temporarily. A set of functions Pn(x), which satisfy the orthogonality
condition
Z l

0

PmðxÞPnðxÞdx ¼ Nndmn; Nn ¼
Z l

0

P 2
nðxÞdx ð92Þ
can be constructed from the function, H �
nðxÞ, such that
PnðxÞ ¼
Xn
i¼0

Min

Mnn
H �

i ðxÞ ð93Þ
where Mij is the cofactor of the element dij of Dn, which is defined as
Dn ¼

d00; d01; d02; . . . ; d0n
d10; d11; d12; . . . ; d1n
d20; d21; d22; . . . ; d2n
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

dn0; dn1; dn2; . . . ; dnn

2
666666666664

3
777777777775
; dij ¼

Z l

0

H �
i ðxÞH �

j ðxÞdx ð94Þ
Using Eqs. (91)–(94), we obtain
bn ¼
X1
j¼n

qj
Mnj

Mjj
with qj ¼ �

X1
i¼0

ai
1

Nj

Z l

0

G�
i ðxÞP jðxÞdx ð95Þ
So it can be rewritten
bn ¼
X1
i¼0

aiK�
in with K�

in ¼ �
X1
j¼n

Mnj

NjMjj

Z l

0

G�
i ðxÞPjðxÞdx ð96Þ
Substituting Eqs. (96) into Eq. (89), it can be obtained
X1
n¼0

anY �
nðxÞ ¼ U 0ðxÞ; Y �

nðxÞ ¼ E�
nðxÞ þ

X1
i¼0

K�
niF

�
i ðxÞ ð97Þ
So it can now be solved for the coefficients an by the Schmidt method again as above mentioned.
With the aid of Eq. (96), the coefficients bn can be obtained.
6. Numerical calculations and discussion

As discussed in works [11–17,24], it can be seen that the Schmidt method is performed satisfac-
torily if the first ten terms of infinite series in Eqs. (89) and (90) are retained. The behavior of the
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sum of the series keeps steady with the increasing number of terms in Eqs. (89) and (90). The coef-
ficients an and bn are known, so that the entire stress field can be obtained. However, in fracture
mechanics, it is important to determine the stresses syy, sxy and the electric displacement Dy in the
vicinity of the crack tips. In the case of the present study, syy, sxy and Dy along the crack line can
be expressed as:
Table

Mater

c11 (1

c33 (1

c44 (1

c13 (1

e31 (C

e33 (C

e15 (C

e11 (1
e33 (1
syyðx; 0Þ ¼
2

p

X1
n¼0

Z 1

0

anQnJ 2nþ2ðslÞ
X3
i¼1

giðsÞb1i þ bnRnJ 2nþ1ðslÞ
X3
i¼1

giðsÞb2i

" #
cosðsxÞds ð98Þ

sxyðx; 0Þ ¼
2

p

X1 Z 1

0

anQnJ 2nþ2ðslÞ
X3

giðsÞb3i þ bnRnJ 2nþ1ðslÞ
X3

giðsÞb4i

" #
sinðsxÞds ð99Þ
n¼0 i¼1 i¼1

1

ial properties of the piezoelectric materials

PZT-4 P-7 PZT-5H

010 N/m2) 13.9 13.0 12.6

010 N/m2) 11.3 11.9 11.7

010 N/m2) 2.56 2.5 3.53

010 N/m2) 7.43 8.3 5.3

/m2) �6.98 �10.3 �6.5
/m2) 13.84 14.7 23.3

/m2) 13.44 13.5 17.0

0�10 C/V m) 60.0 171.0 151.0

0�10 C/V m) 54.7 186.0 130.0

0.990 0.995 1.000 1.005 1.010
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Fig. 2. The stress along the crack line versus x for l = 1.0 and a/2bl = 0.001 (P-7).
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Dyðx; 0Þ ¼
2

p

X1
n¼0

Z 1

0

anQnJ 2nþ2ðslÞ
X3
i¼1

giðsÞb5i þ bnRnJ 2nþ1ðslÞ
X3
i¼1

giðsÞb6i

" #
cosðsxÞds

ð100Þ

bji (j = 5, 6; i = 1, 2, 3) are non-zero constants. It can be seen in Appendix A.
So long as a/2bl5 0, the semi-infinite integration and the series in Eqs. (98)–(100) are conver-

gent for any variable x. Eqs. (98)–(100) give a finite stress field and a finite electric displacement
field all along y = 0, so there is no stress singularity at the crack tips. However, for a/2bl = 0, the
classical stress and the electric displacement singularities are present at crack tips. At �l < x < l,
sð1Þyz =s0 is very close to negative unity, and for x > l, sð1Þyz =s0 possesses finite values diminishing from
τ y
y/

τ 0
 

x
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Fig. 3. The stress along the crack line versus x for l = 1.0 and a/2bl = 0.001 (P-7).
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Fig. 4. The stress along the crack line versus x for l = 1.0 and a/2bl = 0.003 (P-7).
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a finite value at x = l to zero at x =1. Since a/2bl > 1/100 represents a crack length of less than
100 atomic distances [10], and such submicroscopic sizes other serious questions arise regarding
the interatomic arrangements and force laws, we do not pursue solutions valid at such small crack
sizes. The semi-infinite numerical integrals, which occur, are evaluated easily by Filon�s method
[25] because of the rapid diminution of the integrands. In all computation, the materials are as-
sumed to be the commercially available PZT-4H, P-7 and PZT-5H. Material properties are given
in Table 1.
The results of the stress field and the electric displacement field are plotted in Figs. 2–11.
The following observations are very significant:

(i) In the present paper, the traditional concept of linear elastic fracture mechanics and the
non-local theory are extended to include the piezoelectric effects.
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-2

0

2

4

6

8

τ y
y/

τ 0
 

x

Fig. 5. The stress along the crack line versus x for l = 1.0 and a/2bl = 0.01 (P-7).
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Fig. 6. The electric displacement along the crack line versus x for l = 1.0 and a/2bl = 0.001 (P-7).
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(ii) For a/2bl5 0, it can be proved that the semi-infinite integration in Eqs. (98)–(100) and the
series in Eqs. (98)–(100) are convergent for any variable x. So the stress and the electric dis-
placement give finite values all along the crack line. Contrary to the classical electro-elastic
theory solution, it is found that no stress and electric displacement singularities are present
near crack tips, and also the present results converge to the classical ones when far away
from the crack tip. The maximum stress does not occur at the crack tip, but slightly away
from it as shown in Fig. 2. This phenomenon has been thoroughly substantiated in [26]. The
distance between the crack tip and the maximum stress point is very small, and it depends
on the crack length and the lattice parameter.

(iii) The stress at the crack tip becomes infinite as the lattice parameter a! 0. This is the clas-
sical continuum limit of square root singularity. This can be shown from Eqs. (77) and (78).
For a! 0, gi(s) = 1, Eqs. (77) and (78) will reduce to the dual integral equations for the
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Fig. 7. The stress at the crack tips versus a/2bl (P-7).
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Fig. 8. The electric displacement at the crack tip versus a/2bl (P-7).
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Fig. 9. The stress along the crack line versus x for l = 1.0 and a/2bl = 0.001 (PZT-4).
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Fig. 10. The electric displacement at the crack tip versus a/2bl (PZT-4).
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same problem in classical electro-elastic materials. These dual integral equations can be
solved by using the singular integral equation for the same problem in the local piezoelectric
materials problem. However, the stress and the electric displacement singularities are
present at crack tips in the local piezoelectric materials problem as well known.

(iv) For the a/2bl = constant, viz., the lattice parameter does not change, the value of the stress
concentrations (at the crack tip) increase with increase of the crack length (a/2bl will
becomes smaller with the increase of the crack length l). Noting this fact, experiments indi-
cate that the piezoelectric materials with smaller cracks are more resistant to fracture than
those with larger cracks as stated in [10].

(v) The significance of this result is that the fracture criteria are unified at both the macroscopic
and microscopic scales, viz., it may solve the problem of any scale cracks (it can solve the
problem of any value of a/2bl).
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Fig. 11. The stress along the crack line versus x for l = 1.0 and a/2bl = 0.001 (PZT-5H).
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(vi) It can be found that the stress and the displacement fields depend on the length of the crack
and the lattice parameter. The effects of the other material parameters on the stress and the
displacement fields are very small as shown in Figs. 3, 4, 9 and 11.

(viii) The results of the stress and the electric displacement at the crack tip tend to decrease with
increase in the lattice parameter as shown in Figs. 7, 8 and 10.

(ix) The electric displacement for the permeable crack conditions is much smaller than the
results for the impermeable crack conditions as shown in Figs. 6 and 8.
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Appendix A

For k21 6¼ k22 6¼ k23 > 0 case, the non-zero constants bji (j = 1, 2, 3, 4, 5, 6; i = 1, 2, 3) can be ob-
tained by following formulas ([M], [Q], [N] and [P] are matrices as follows):
½M 	 ¼ ½mij	; ½Q	 ¼ ½qij	; ½N 	 ¼ ½nij	; ½P 	 ¼ ½pij	 ði; j ¼ 1; 2; 3Þ;

m1i ¼ ki c13 �a1 þ a2k
2
i

� �
þ c33 c11e11 � a3k

2
i þ c44e33k

4
i

� ��
þe33 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
ði ¼ 1; 2; 3Þ;

m2i ¼ c44k
2
i a1 � a2k

2
i

� �
þ c44 c11e11 � a3k

2
i þ c44e33k

4
i

� �
þ e15 c11e15 � a4k

2
i þ c44e33k

4
i

� �
ði ¼ 1; 2; 3Þ;
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m3i ¼ ki e31 �a1 þ a2k
2
i

� �
þ e33 c11e11 � a3k

2
i þ c44e33k

4
i

� ��
�e33 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
ði ¼ 1; 2; 3Þ;

q1i ¼ ki c13 a1 � a2k
2
i

� �
� c33 c11e11 � a3k

2
i þ c44e33k

4
i

� ��
�e33 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
ði ¼ 1; 2; 3Þ;

q2i ¼ c44k
2
i a1 � a2k

2
i

� �
þ c44 c11e11 � a3k

2
i þ c44e33k

4
i

� �
þ e15 c11e15 � a4k

2
i þ c44e33k

4
i

� �
ði ¼ 1; 2; 3Þ;

q3i ¼ ki e31 a1 � a2k
2
i

� �
� e33 c11e11 � a3k

2
i þ c44e33k

4
i

� ��
þe33 c11e15 � a4k

2
i þ c44e33k

4
i

� ��
ði ¼ 1; 2; 3Þ;

n1i ¼ ki �a1 þ a2k
2
i

� �
; n2i ¼ � c11e11 � a3k

2
i þ c44e33k

4
i

� �
ði ¼ 1; 2; 3Þ;

n3i ¼ � c11e15 � a4k
2
i þ c44e33k

4
i

� �
ði ¼ 1; 2; 3Þ

p1i ¼ �ki a1 � a2k
2
i

� �
; p2i ¼ c11e11 � a3k

2
i þ c44e33k

4
i

� �
ði ¼ 1; 2; 3Þ;

p3i ¼ c11e15 � a4k
2
i þ c44e33k

4
i ði ¼ 1; 2; 3Þ;

y11 y12 y13
y21 y22 y23
y31 y32 y33

2
64

3
75 ¼ f½N 	 þ ½P 	½Q	�1½M 	g�1

b1i ¼ m1iyi1 ði ¼ 1; 2; 3Þ; b2i ¼ m1iyi2 ði ¼ 1; 2; 3Þ; b3i ¼ m2iyi1 ði ¼ 1; 2; 3Þ

b4i ¼ m2iyi2 ði ¼ 1; 2; 3Þ; b5i ¼ m3iyi1 ði ¼ 1; 2; 3Þ; b6i ¼ m3iyi2 ði ¼ 1; 2; 3Þ
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